160 research outputs found

    Spitzer observations of molecules and dust in evolved stars in nearby galaxies

    Full text link
    Molecules and dust are formed in and around the asymptotic giant branch (AGB) stars and supernovae (SNe), and are ejected into the interstellar medium (ISM) through the stellar wind. The dust and gas contain elements newly synthesised in stars, thus, dying stars play an important role on chemical enrichment of the ISM of galaxies. However, quantitative analysis of molecules and dust in these stars had been difficult beyond our Galaxy. The high sensitivity instruments on board the Spitzer Space Telescope have enabled us to study dust and molecules in these stars in nearby galaxies. Nearby galaxies have wide range of metallicities, thus the impact of the metallicity on dust and gas production can be studied. This study will be useful for chemical evolution of galaxies from low to high metallicities.Comment: 1 page; IAU Highlights of Astronomy, vol 15 (SpSp1 IR and Sub-mm Spectroscopy a New Tool for Studying Stellar Evolution

    Revealing infrared populations of nearby galaxies using the Spitzer Space Telescope

    Full text link
    Due to their brightness in infrared, asymptotic giant branch (AGB) stars are in important evolutionary stage to be understood at this wavelength. In particular, in next decades, when the infrared optimised telescopes, such as the JWST and the ELT are in operation, it will be essential to include the AGB phase more precisely into the population synthesis models. However, the AGB phase is still one of the remaining major problems in the stellar evolution. This is because the AGB stellar evolution is strongly affected by the mass-loss process from the stars. It is important to describe mass loss more accurately so as to incorporate it into stellar evolutionary models. Recent observations using the Spitzer Space Telescope (SST) enabled us to make a significant progress in understanding the mass loss from AGB stars. Moreover, the SST large surveys contributed to our understanding of the role of AGB stars in chemical enrichment process in galaxies. Here we present the summary of our recent progress.Comment: 4 pages, 2 figures, 1 table; IAU S262 proceeding

    From flux to dust mass: Does the grain-temperature distribution matter for estimates of cold dust masses in supernova remnants?

    Get PDF
    The amount of dust estimated from infrared to sub-millimetre (submm) observations strongly depends on assumptions of different grain sizes, compositions and optical properties. Here we use a simple model of thermal emission from cold silicate/carbon dust at a range of dust grain temperatures and fit the spectral energy distribution (SED) of the Crab Nebula as a test. This can lower the derived dust mass for the Crab by ~50% and 30-40% for astronomical silicates and amorphous carbon grains compared to recently published values (0.25M_sun -> 0.12M_sun and 0.12M_sun -> 0.072M_sun, respectively), but the implied dust mass can also increase by as much as almost a factor of six (0.25M_sun -> 1.14M_sun and 0.12M_sun -> 0.71M_sun) depending on assumptions regarding the sizes/temperatures of the coldest grains. The latter values are clearly unrealistic due to the expected metal budget, though. Furthermore, we show by a simple numerical experiment that if a cold-dust component does have a grain-temperature distribution, it is almost unavoidable that a two-temperature fit will yield an incorrect dust mass estimate. But we conclude that grain temperatures is not a greater uncertainty than the often poorly constrained emissivities (i.e., material properties) of cosmic dust, although there is clearly a need for improved dust emission models. The greatest complication associated with deriving dust masses still arises in the uncertainty in the dust composition.Comment: 13 pages, 7 figures, to appear in MNRA

    Observational studies of mass loss from AGB stars

    Full text link
    It is important to properly describe the mass-loss rate of AGB stars, in order to understand their evolution from the AGB to PN phase. The primary goal of this study is to investigate the influence of metallicity on the mass-loss rate, under well determined luminosities. The luminosity of the star is a crucial parameter for the radiative driven stellar wind. Many efforts have been invested to constrain the AGB mass-loss rate, but most of the previous studies use Galactic objects, which have poorly known distances, thus their luminosities. To overcome this problem, we have studied mass loss from AGB stars in the Galaxies of the Local Group. The distance to the stars have been independently measured, thus AGB stars in these galaxies are ideal for understanding the mass-loss rate. Moreover, these galaxies have a lower metallicity than the Milky Way, providing an ideal target to study the influence of metallicity on the mass-loss rate. We report our analysis of mass loss, using the Spitzer Space Telescope and the Herschel Space Observatory. We will discuss the influence of AGB mass-loss on stellar evolution, and explore AGB and PN contribution to the lifecycle of matter in galaxies.Comment: 4 pages; 2 figures; proceedings of "IAU 130: Planetary Nebulae: an Eye to the Future

    The superwind mass-loss rate of the metal-poor carbon star LI-LMC 1813 in the LMC cluster KMHK 1603

    Full text link
    LI-LMC 1813 is a dust-enshrouded Asymptotic Giant Branch (AGB) star, located in the small open cluster KMHK 1603 near the rim of the Large Magellanic Cloud (LMC). Optical and infrared photometry between 0.5 and 60 micron is obtained to constrain the spectral energy distribution of LI-LMC 1813. Near-infrared spectra unambiguously show it to be a carbon star. Modelling with the radiation transfer code Dusty yields accurate values for the bolometric luminosity, L=1.5 x 10^4 Lsun, and mass-loss rate, Mdot=3.7(+/-1.2) x 10^-5 Msun/yr. On the basis of colour-magnitude diagrams, the age of the cluster KMHK 1603 is estimated to be t=0.9-1.0 Gyr, which implies a Zero-Age Main Sequence mass for LI-LMC 1813 of M(ZAMS)=2.2+/-0.1 Msun. This makes LI-LMC 1813 arguably the object with the most accurately and reliably determined (circum)stellar parameters amongst all carbon stars in the superwind phase.Comment: Accepted for publication in MNRAS (better quality figure 1 on request from jacco

    Akari/irc near-infrared spectral atlas of galactic planetary nebulae

    Get PDF
    Near-infrared (2.5–5.0 μm) low-resolution (λ/Δλ ~ 100) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a 1' × 1' window for spectroscopy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3–3.5 μm hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are describe

    A "Firework" of H2 Knots in the Planetary Nebula NGC 7293 (the Helix Nebula)

    Get PDF
    We present a deep and wide field-of-view (4' × 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H2 v = 1 → 0 S(1) line. The excellent seeing (0farcs4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2farcm2-6farcm4 from the central star (CS). At the inner edge and in the inner ring (up to 4farcm5 from the CS), the knot often show a "tadpole" shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4farcm5-6farcm4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H2 surface brightness in the inner ring: H2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H2 formation and destruction rates, H2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas. Based on data taken with the Subaru Telescope, National Astronomical Observatory of Japan (proposal ID S07B-054).Peer reviewe
    • …
    corecore